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Abstract

We discussseveralaspectsof singularitiesof thesolutionsof thepartial differential
equationsof Klein—Gordon, Schrödingerand Dirac. In particularwe analyzethe fold-
type singularity,of the first and higherorders,andthe relatedcharacteristicequations.
We alsoconsiderthe field equationsas reductionof homogeneousequationsin higher
dimensions,anddiscusshow singularitiesof thesolution arereduced.
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1. Introduction

TheLagrangianformalismplaysa major role in the descriptionof evolution-
ary systemsin Physics.Among otherthings, it allows for manifestlycovariant
theories,Noether’stheoremand locality.

* Correspondingauthor.E-mail address:LIZZI@NA.INFN.IT.
E-mail addresses:GIMARMO@NA.INFN.IT, SPARANO@NA.INFN.IT,

VINOGRAD@SALERNO.INFN.IT.

0393-0440/94/$07.00© 1994 ElsevierScienceB.V. All rights reserved
SSD10393-0440(93)E0053-R



212 F. Lizzi et al. /Journal of GeometryandPhysics 14 (1994)211—235

Many relevantLagrangiansfor physics (gaugetheories,gravitation,relativis-
tic particles)give rise to dynamicalsystemsin implicit form, i.e. they do not
give rise to vector fields. They only determinea submanifoldof the relevant
carrier space,and this submanifoldneed not be a section of the appropriate
bundle. For thesesystemsone usually deals with constrainedformalism, as
elaboratedby Dirac andBergman.However, this proceduredoesnot appear
to be anaturalapproachto theseequations,for one is forced to deal with the
inverseof a matrixwhich may changerank from point to point. This equations
are instancesof implicit differential equationsandtheir solutionsmay exhibit
singularities.

Another familiar exampleof partial differentialequations(PDEs)arisingin
implicit form in physics is providedby the Hamilton—Jacobiform of dynamics.
Herethe equationfor a function S on the configurationspaceQ hasthe form

( OS\ DS~

The Hamiltonian function H = H(q,p, t) is in generalnon-linearand gives
rise to an implicit differential equationfor S. In more geometrical terms,
the equationfor S is replacedby an equationfor Lagrangiansubmanifolds
which are not necessarilysectionsof the cotangentbundle T* (Q) -~ Q. To
simply illustratethe situationwe restrict to Q = R~,T* (Q) = R2~.Given a
Hamiltonian function H, the associatedgeneralizedversion of the Hamilton—
Jacobi form of the dynamicscanbe given alongthe following lines.

First find the embedding~t~’

K1 T*Rfl

with the property

~ ~I~*wo=O

wherew
0 = dpi A dq

2 is the canonicalsymplecticstructure.Of courseif 0 (Rn)
is transverseto the fibers of T*Rn, we can find locally a functionS such that
dS(R~)= 0(R’1) in the appropriateneighborhood.In many casessolutions
0 will fail to be transverseto the fibers, causticsarise in this way. Other
singularitiesalso show up in this respect.

When the symplecticstructureis replacedby the contactstructureon R2~+1,

the 1-jets of functions on K’, we have Legendrerather than Lagrangeem-
beddings. The projection of this submanifold on the base may not be a
diffeomorphism. The set where there is lack of transversality is the wave
front. The connectionbetweenHamilton—Jacobitheory and the Schrödinger
equation shows that the analysisof thesesingularities is very important in
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the WKB approximationof quasi-classicalasymptoticsof the solutionsof the
Schrädingerequation.One can hypothesizethat the geometricbackground
found by V. Maslov [1] for quasi-classicalasymptoticsolutionsgives rise to a
similar theory at the level of exactsolutions.

The study of thesesingularitiesis centeredaroundthe subsidiaryequations,
describingall possibleformsof a prescribedtypeof singularitiesadmittedby a
given systemof PDE’s.Thereforeit is necessaryto developa theoryof singular
solutionsof PDE’s. Two stepsareneeded:

(i) The first step is to formalize the conceptof singularity for solutionsof
PDE’s, andto classify them.

(ii) The secondsteprequiresthat we developaformal procedureto associate,
with a given system of PDE’s )) and a given singularity type ~‘, the
subsidiaryequations(Yr) mentionedabove.

Also central in this approachis the reconstructionproblem,that is, given the
systemof equationsYx, andthe singularitytype 2’ (to whichtheycorrespond),
find the original systemy. The quantizationprocedure,as well as the problem
of the sourcesof the fields, areof this kind. It alsoseemsto be very important
for the mechanicsof continuousmedia,as it gives regular methodsto deduce
the equationsgoverningthe behaviorof the mediumfrom the propagationof
singularitiesin it.

With this paperwe would like to start a systematicinvestigation of the
correspondence)) 4—* y~for some fundamentalequationsof mathematical
physics. Our aim here is to deduce and to discussthe equationsY~for
some well known equations,supposingI to be the geometricfolding-type
singularitiesdescribedin [6,7].

In Section2 we recall the generalfeatureof fold-type singularities,andthe
subsidiaryequationsassociatedto them. We recognizein some of them the
analogof the classicalcharacteristicequations,we call them k-characteristic
equations.

In Section 3 we study the k-characteristicequationsfor someclassicalfield
theory equations:Klein—Gordon, Schrödingerand Dirac. Here we will see
that, since the k-characteristicequationsdependon the symbol only, the
singularitieswill not be sensitiveto the mass,in the first and third case,or
the time derivativeterm andpotentialin the secondcase.We find, however,
that for the Klein—Gordon equation, one and two characteristicsdescribe,
respectively,the propagationof masslesspoint-like and“focusing” objects.

In Section4 wereconsiderthe sameequationsas reductionof homogeneous
equationsin an extendedspace.Oncethis is done,all the termsin the equation
contribute to the symbol, and the folds then yield the correct equationsof
motion of the correspondingpropagatingobjects.

In Section 5 we find the remainingsubsidiaryequations(for 1-singularity,
called complementaryequations)for Klein—Gordon, Schrödinger,Dirac and
Maxwell equations.
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As for now, our paper is a sort of ‘phenomenological’paper, i.e. we dis-
cuss severalaspectsof singularitiesfor relevantequationseventhough at the
momentsomeequationsdo not allow for a clearcut physicalinterpretation.

2. Generalities

We recall that geometricsingularitiesare singularitiesof multi-valued solu-
tions of PDE’s [2—5]. To makemoreprecisetheseconceptssomepreliminaries
are to be done.Let E be a (m + n)-dimensionalmanifold (the manifold of
all dependentandindependentvariables).Giventwo n-dimensionalsubman-
ifolds, L1 and L2, of E we say that they havethe samek-th order jet at a
point a E L1 n L2 iff they are tangent to eachotherwith order k. So, a k-th
order jet at a ~ E is an equivalenceclassof n-dimensionalsubmanifoldsof
E passingthrough a. The set of all such k-th order jets admits in a natural
way a smoothmanifold structurewhich is called the k-th orderjet spaceof n-
dimensionalsubmanifoldsof E andis denotedby jk = ,jk (E, n). Projections
Jk,l : jk J

1 are definedin a naturalway. Let (x,u) with x = (x’ x”),
u = (u’,. . . ,x~)be a divided local charton E, that is a local chartonE where
someof the coordinatefunctionsare proclaimed‘independent’variablesand
the remainingones‘dependent’variables.Such adivided charton E generates
a local charton jk (E, n) composedof the variables

~ a~k (1)

with 1 < a < n, 1 < i < m and a = (ii,...,in) being a multiindex, 0~ =

i
1 + ... + i,,. The Cartan distribution on Jk(E,n), also called the k-th order
contactstructure, is definedas a distribution of tangentsubspacesof E given
by the systemof Pfaff equations

= 0, (2)

with 1 < i < in, 1 <~ <n, a~<k. Every n-dimensionalsubmanifoldL of E

given in the form
= £(x’,. . .,x~), 1 <i <in, (3)

canbe lifted canonicallyon jk (E, n). This lifted submanifoldL(k) c jk (E, n)
is given by the equations

old C
u~= l<i<m, 0<~aj<k (4)

where Oi°~/3xdstandsfor O]°i/Ox~’ Oxh~supposingthat a = (i1~..•~ia).
A submanifoldN c j” is called integral if it satisfies (2). Note that all the
manifoldsof the form L(k) areintegral.An n-dimensionalsubmanifoldN c jk
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is calledR-manifoldif for almosteverypoint 0 e N thereexistsa neighborhood
of 0 in N which is of the form L(k) for an L C E. Here‘almost every’ means
excludinga subsetY of N with dim Y < n. It canbe provedthat this subsetY
coincideswith the singularsetof the projection Thk,k_1 : jk jkl restricted
to N. Becauseof this reasonY is denotedby sings C N. Let now 0 be a
point of sings, N being an R-manifold, and T0N be the tangent spaceof
N at 0. The kernel of the projection of T0N alongmk,k_1 is called the label
of 0. These labelscan be classified naturally with respect to the group of
contactdiffeomorphismsof jk Recall that contactdiffeomorphismsarethose
diffeomorphismsthat preservethe Cartan distribution of jk• The result of
this classification (see [6,7]) tells us that the label equivalenceclassescanbe
labeledby the finite-dimensionalcommutativeR-algebras(in fact this result
wasformulatedin [6] in slightly different terms).

As is well known a finite-dimensionalcommutativeR- algebrasplits in an
essentiallyuniqueway into a direct sumof algebrasF(k), with F = R, C, and
F(k) standsfor the F-algebrageneratedby an element,say ~, subjectedto the
conditions~ = 0,ç~~

1� 0. In this paperwe are concernedwith solution
singularitiescorrespondingto R(k)-label type which we will call folds. These
singularitiescanbe paralleledwith the Thom—Boardmanonesof the standard
singularity theory,commonly denotedby 1(k)~

Recall,finally, thatak-th ordersystemof PDEimposedon a n-dimensional
submanifoldof E canbe representedas a submanifoldy C j~’~(E,n). In fact,
local equationsof y are obviouslyof the form

~ j=l,...,I (5)

It is easily seen now that the functions u’ = J(x), i = 1,...,m give us a
solutionof (5) iff L(k) c Y whereL cE is the submanifoldof E given by the
equationsu’ = J (x). This motivatesthe following concept which is crucial
for what follows: an R-manifold N is called a multivaluedsolution of (5) iff
Ncy.

We stressthat the conceptof R-manifoldallows one to generalizethe notion
of solution for an arbitrary non-linearsolution systemof PDE essentiallyin
the sameway as the conceptof lagrangiansubmanifoldin T* M doesfor the
Hamilton—Jacobiequation.

Roughly speaking,equations))~,as mentionedin the introduction,describe
possibleshapesof singularsubmanifoldsof sing~formedby all I-type singular
points. The system31 for I = R(k) will be called the k-singularitysystemas-
sociatedto y. This is a (generallyundetermined)systemof partial differential
equationson n — k independentvariables,which containsa specificequation
whichwe callk-characteristic;1-characteristicequationscoincidewith classical
characteristicequationsintroducedby Hadamardwhen studyingthe unique-
nessof the Cauchyproblem.Notethat the eikonalequationis the characteristic
equationfor anumberof fundamentalequationsof mathematicalphysics. So,
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k-characteristicequationsfor k > 1 describe,in particular, ‘wave front’ prop-
agationfor ‘focusing objects’. We call complementaryequationsthose which
haveto be addedto thecharacteristicones to get the full k-singularitysystem.
Rememberingthat the characteristicequationsdescribethe space—timeform
of solution singularitiesit is natural to think that complementaryequations
describebehaviorsof internalstructuresof singularitiesgiving a more intrinsic
description.It is worth emphasizingthat the study of asymptoticsolutions
of a differential equationleads to the theory of lagrangiansubmanifoldson
TtM. From his point of view one can treat lagrangiansubmanifoldsas the
asymptoticcounterpartof R manifolds.A physical interpretationof thesecom-
plementaryequationsdependsobviouslyon the physicalnatureof the original
equationin question.We hope to presentsome examplesof this kind in a
future publication.

In the following two sectionswe deduceboth k-characteristicequationsand
complementaryequationsfor fundamentalequationsof mathematicalphysics.
The necessarycomputationalalgorithms,extractedfrom the geometricalde-
scriptionof YE given in [71arepresentedherewithout proof.

3. k-characteristicequations

3.1. Characteristicequationsfor a differential equation

The simplest,but non-trivial, casein which k-characteristicequationsappear
is that of secondorderscalardifferential equations.k-characteristicequations
for them canbe found as follows.

Let x = (xi, . . . , Xn) be independentvariables.The generalsecondorder
scalardifferential equationis of the form:

F(x,u,u
1,u11)= 0 (6)

where u = 0u/Ox1 etc. The correspondingcharacteristicmatrix is thenof the
form:

M= (-~-~i~~. (7)~5u~1j

With this matrix we can associatea bilinear pairing on 1-forms on the space
of independentvariables,namely

(du~dw)F= -~-u1w1. (8)

This pairing can be extendedto the full exterior algebra.For instanceon
two-forms
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(d~1 Adq~2Idq~3Adq~4)F= (dq~lIdq~3)r(dq~2~dçb4)F

— (dq~lIdq~4)F(dq~2Idçb3)F. (9)

The k-characteristicequationsexpressthe fact that the (n — k )-vectortangent
to N is isotropicwith respectto the metric on A~~_kTM inducednaturallyby
the metric on TM which is in its turn dualto the metric M11, M1~= OF/8u11
on T*M. Equivalentlytheseequationsstatethat thedualk-covectoris isotropic
with respectto the metric on AkT*M coming from thejust mentionedmetric
on T*M. The fact that a decomposablek-covector 0~A A 0~E AkT~’M,
where0~,... , 0,~� T~M,is isotropic meansthat the K-dimensionalsubspace
L generatedby the 0’s is tangentto the characteristicconeK~C T,~Mgiven
by the equation

~Mt1(x)p1p~ = 0 forx = a. (10)

Similarly, the dual (n — k)-vector 01 A• A °n—kE A~~_kTaM,01,... ,
0n—kE

TaM, being isotropicis tangentto the dualconeKa C TaMgiven by

>M”(x)vjvj=O (11)

whereMG is the n— 1-orderminorof the matrix I IM~II whichis the complement
of the elementM,~.It results that a solution of Eq. (17) is an (n —

dimensionalsubmanifold N of M which is tangentto the cone Ka at each
point a. The lines along which N is tangent to the cones Ka form a field
of directions (= one-dimensionaldistribution) on N. Integral curves of this
distributionareexactlythosealongwhichRk-singularitiespropagate.Fork = 1
theyare classicalbicharacteristicsof the original Eqs. (6).

To find explicitly the k-characteristicequationsdivide the variablesx into
two parts, say t = (x

1,. ..,tn_k) andy = (y1,...,y/~),where for instance

= Xk+j , 1 <i < n — k

y1=x1,l<i~k. (12)

Supposethat the projectionof the k-singularity (which lies in J
2) on the x

spaceis of the form

~ i=l,...,k.

The k-form

d~lAd~
2AAd~k (13)

definesthe k-characteristicequationsby setting

(d~1A A dIkjd~lA .. A d~k)= 0. (14)
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Using the coordinatesintroducedabovetheseequationscanbe written in the

following way: considerthe (n — k) x n-matrix

o = Ox~(t) (15)
at

1

with i = 1,... n, j = 1 ...n — k. Indicating with
1k,l = Oq~k/Otl, with the

abovechoice (12) we have

~11,1 q~2,1 ... ~k,l 1 0 ... 0

o = ‘p1,2 ~2,2 •.. ~k,2 0 1 ... 0 (16)

~1,n-k ~2,n-k ... ~k,n—k 0 0 ... 1

Indicating by 0,, 1,,k’ < ~1 < ~2 < ~ < n, the minors of 0
composedof its tl~th,...,ln_k~thcolumnsmultiplied by (_I)hI+’ k+flk, then
(14) takesthe form

“li 1*—k ‘1’ll J*_k”1j, 1,—k —

where M~”’~’~standsfor the minor of M which remainsafter cancelling

the ~ ifl_k-th rows and the ~ ,j~_~-thcolumns; a sum over repeated
indices is understoodhereand in the following. In somecasesbelowwe have
found it more convenientto choosethe z’s in a way different from (12), in
thesecasesthe explicit form of the 0 in (16) will changeaccordingly.

3.2. 1- and 2-characteristicequationsfor systemsofdifferentialequations.

Let

F
1(xI

1,ua,u~)= 0, i = 1,...,!, a = 1,...,m,

a = 1,...,n, a = (i
1,...,i~) (18)

be a determinedsystem (1 = m), and let D (p), ~v= (P1,. . . , p,,), be its
characteristicdeterminant,that is:

OF, I

D(p) = det pd , pd = p1
t.. .p,1

1”. (19)
We now discussoneand two-folds.

3.2.1. 1-Folds

The singularity is of the form

f(x) = 0, (20)

and the characteristicequationis

D(Vf) = 0. (21)



F. Lizzi et al. /Journalof Geometryand Physics14 (1994)211—235 219

3.2.2. 2-Folds
Let us look now to the (n — 2)-dimensionalsurfacescorrespondingto the

2-fold singularitiesin the form

= ~(t) , x2 = W(t) , t = (t1,. . . , t~). (22)

Belowwepresentonly a procedureto deduce2-characteristicequations,amore
detailedpresentationcanbe found in [7]. Let us do the substitutions

P1 ~, P2 ‘7, P2+a ~ + i7~/Ia) (23)

where~ = Oq~/Ot
1,,~ = OVI/Ota. We obtain

D(p) = V(ç~,~). (24)

Here V ~ is a homogeneouspolynomialof orderk (the orderof the system
F1 = 0) whosecoefficientsdependon ~,, ~ The characteristicequationfor
2-folds is then

r(h) = 0 (25)

whereh = V(ç~,1) and r(h) = R(h, h’). R(h, g) being the resolventdetermi-

nantof the two-polynomialf, g:

h(~) = a0~”+ a1~’~+ + a~, (26)

g(~) = b0~
m+ + bm. (27)

That is

a~ a
1 ... an 0 0 ... 0

0 a0 ... afl_l a~ 0 ... 0

0 0 a0 a1 ... a~
R(h,g) = (28)

b0 b1 ... bm 0 0 ... 0
0 b0 ... bm_1 bm 0 ... 0

0 0 0 b0 ... bm

The determinantis of order n + m. If the systemF1 = 0 is overdetermined
(I> in), the 1- and2-characteristicequationsare (21) and (25) imposedon
all characteristicdeterminants.

4. Examples

We now discussin detail someexamples,first the caseof the Klein—Gordon
equation.Here we find the eikonal equationfor 1-folds. For 2-folds we find
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an equationdescribinga null two dimensionalsurface,to be interpretedas an
analogof‘wave front’ propagation.Thesituationis analogousfor 3-folds, where
we will observethe k, (n — k )-fold duality. Thenwe discussthe Schrödinger
equationwherewe find that, since the symbolof the differentialoperatordoes
not contain any information, not only on the potential V, but also on the
time derivatives, the solutionsof the characteristicequationare ‘space-like’,
that is, transversewith respectto time. We will discussand interpret these
results.Finally we will consider1- and2-characteristicequationsfor the Dirac
equation.

4.1. Klein—Gordon equation

The Klein—Gordon equationis:

(O?—V2+m2)u=0 (29)

The matrix M andthe differential equationon J
2 are respectively

1000
— 0 —l 0 0 30

0 0 —l 0

0 0 0 —l

and

F=uoo—1u11+m
2u=0. (31)

Theparametrizationsof the singularitiesandthe correspondingcharacteristic
equationsfor 1,2 and 3-folds areas follows.

4.1.1. 1-Folds

We write the singularity in the form:

t = ~(x~,x~,x
3) , (32)

thereforethe 3 x 4 matrix 0 is

fq~’i 1 0 0\
cP=(~52 0 1 0~. (33)

\I�’3 0 0 1)

Using Eq. (17), or Eq. (14)

(d~Id~)= 0 (34)

where

= ~~(x1,x2,x3)— t = 0, (35)
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we obtain

= (V~)2= 1. (36)

This is the eikonal equation.Observehoweverthat an interpretationof this
equation(more preciselyof its characteristics)in termsof particlesassociated
to the fields is correct only for m = 0 as the surfacesmove at the speedof
light. The meaningof (36) for the massivecasehasbeen discussedby Racah
[9] in the contextof the Dirac equation.He observedthat if the wave function
of a particleis differentfrom zeroin a finite region, thenthe eikonalequation
describesthe motion of the boundary of such a region. Since the Fourier
expansionof the wave function will havecomponentswith all possiblewave
numbers,this surfacewill moveat the speedof light, evenif the particledoes
not. This problemof interpretationwill obviouslybe presentfor all k-folds, as
well as for the Schrödingercasebelow; the next section is in fact dedicatedto
adiscussionof this problem.

4.1.2. 2-Folds
In this caseit is convenientto parametrizethe singularity as follows:

x
2=~2(t,x1) (37)

= ~3(t,x1) . (38)

As this is not the choicemadein (12), the form of 0 will beslightly different;
usingEq. (15) we obtain:

o — (1 0 t1~2,0 ~3,0 (39)
— ‘\0 1 ~2,1 ~3,1

And the equationis

(..L. J. .1. 1. t2 i.~. ~2 ~ ~2 i~ ~2 ~.i.

k’P2,0Y3,l — Y2,1Y3,OJ + ~Y3,0) + ~V2,0) — ~Y3,1) — k’~2,l) — =

This equationdescribesa two dimensionalnull submanifold,that is, a surface
which is everywheretangentto a null cone. Notice that the world surfacesof
null (tensionless)strings [8] aretwo dimensionalnull submanifolds.

4.1.3. 3-Folds
Again hereit is convenientto use t in the parametrizationof the singularity:

x1=çb1(t) (41)

x2=t~2(t) (42)

= ~3(t) , (43)
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thus

0 = (1 ~i,o ~2,0 ~3,0) . (44)

And the characteristicequationis

= 1 (45)

This equationdescribesa null curve. In this equation we immediatelyrecognize
the lagrangianof a free particle, thus showingthe abovementionedduality.

4.2. Schrodingerequation

The Schrödingerequationis:

/ a h2V2I —i/I-— — — + V(x) u(x,t) = 0 (46)
~ Ot 2m j

with t = x
0. Written in termsof the coordinateson J2 this equationbecomes

F = —ihu0 — ~-_~U1t + Vu = 0. (47)

From Eq. (7) we obtain for the matrix M:

0 0 0 0
0 —h~/2m 0 0 480 0 —h

2/2m 0

0 0 0 —h2/2m

4.2.1. 1-Folds
The singularity is of the form:

t = /(x
1,x2,x3); (49)

thereforethe 3 x 4 matrix 0 is

1 0 0\
0 1 0) (50)

~ 0 0 1)

andusingEq. (17) we obtain

(51)
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which hasas solution

= t = const., (52)

that is, the fold is transversewith respect to time. This is in agreement
with what we said aboutthe eikonalequationfor the massiveKlein—Gordon
equation.Here in fact, the theorybeing non-relativistic,the surfacebounding
the regionin which thewave functionis different from zeromoveswith infinite
speed.

4.2.2. 2-Folds
For 2-folds insteadthe equationfor the form of the singularity andof the

matrix 0 are:

t=~o(x2,x3) (53)

x1 =~1(x2,x3) (54)

— (t~o,2 Q~l,2 1 0
0,3 1,3

andthe equationis

(~o,2~1,3— c~1,2~o,3)
2+ ~2 + = 0 . (56)

The solutionsare:

t = constant

x
1 =~1(x2,x3) (57)

where ç5~(x2,x3) is an arbitrary function. They describea two dimensional
surfacein spaceat afixed time. Evenin this casethe singularitiesaretransverse
with respectto time.

4.2.3. 3-Folds

We parametrizethe 3-folds as follows:

t=~o(x3) (58)

x1 ~~1(x3) (59)

x2=çb2(x3), (60)

thus

0 = ~ ~1,3 ~2,3 1) (61)

andthe equationis

(,~~3)2= 0 (62)
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which againhassolution ~ = t =const.,the other ci’s being arbitrary. This
describesaone-dimensionalcurvein spaceatagiven time. And thereforesuch
a curvecannotbe considereda world-line.

4.3. Dirac equation

We finish this section with a brief discussionof the Dirac equation,or
rather the Dirac equations,as it is a systemof four equations,one for each
componentof the spinor. The systemis

(iØ — m)u = 0 (63)

which written explicitly is:

F~(x~,u~’,u~)= iy~u~—m&,au~= 0. (64)

4.3.1. 1-Folds
If the singularity is definedby

f(x”) = 0, (65)

the equationcharacteristicis:

det(~4f~)= 0, (66)

0 u~

which gives:

ff
1’ = 0. (67)

4.3.2. 2-Folds

Parametrizingthe fold by

x
2 =ci2(xo,xi) (68)

x3ci3(xo,xi) (69)

andfollowing the procedureof Section 3 we find the 2-characteristicequation:

~ci2,ici3,i + + = 0. (70)
I i,i 1~j

5. Extendedequations

In the caseof the Maxwell equations,or masslessKlein—Gordon, the char-
acteristicequationdescribesthe classicalmotion of the particlesassociatedto
the fields (photonsor scalarmasslessparticles).In the Schrödingeror massive
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Klein—Gordon casethis does not happen.The reasonis that the characteris-
tic equationis sensitiveonly to the symbol and thereforepotentialand time
derivativedo not appearin the former case,while all information aboutthe
massis absentfrom the latter, for whichwave fronts movein fact at the speed
of light.

We expect that other singularities,sensitive not only to the symbol, will
providethe particle trajectoriesevenin this case.We observehoweverthat it
is possibleto write the equationsaboveas reductionof homogeneousequations
in anextendedspace.If thisis done,all the termsin theequationwill contribute
to the symbol,andthe folds will thenyield equationsof motion of the particles
evenin thesecases.We will describebriefly the reductionprocedureandthen
consideragainthe fold singularitiesandhow theyget reduced.

Considera secondorderdifferential equationof the kind

(A~O~0~+ BILOJA + C)u = 0 (71)

wherethe coefficientsAl”, B’1, C arefunctions,andp, ii = 0,. . . , n — 1. Intro-
ducing an extravariable x_

1, this equationcan be obtainedas reductionof
the following equationhomogeneousin the secondderivatives:

~ = 0, a,b = —l,...,3 (72)

The n + 1 x n + 1 metric gab, written in termsof the matrix A = (A11~),the
vector B = (B11) and the scalarC, hasthe form:

gab = (~B) (73)

If we considerthe spacewith an additional variableas a principal R-bundle,
functions i~ on the total spaceare simply R-equivariantfunctions. The new
operatorD on the total spaceand the operatorD on the basemanifold are
relatedby

g*(lr*(Du)) + .b(g*lr*u). (74)

The reductionis obtainedrestricting the dependenceof the functions I~(xa)
on the x_1 as follows:

i~(xa) = ex~~lu(x,,) (75)

and setting x_1 equalto a constant.In our examples,in order to have that
the extendedmetric hassignature(+, —, . . . , —), we will useEq. (73) with C
replacedby —C andEq. (75) with ex_l replacedby e’-~-’.

The reduction for the singularity is obtainedby fixing the value of the
variable x_1. The introduction of this reduction procedure [10] here may
seemartificial, it is nonethelessinterestingbecauseit showsthat alreadythe
simplest (fold) singularitieshaveseveral non-trivial featuresandare able to
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capturerelevantaspectsof the dynamics of particlesassociatedto fields. In
the following we will find it convenientto put someconstantsin the exponent
of i~in (75) ratherthanin the metric gab.

5.1. ExtendedKlein—Gordoncase

The extendedKlein—Gordon equationis:
gabi~ab= 0 (76)

with the metric

—in
2 0 0 0 0

01000
gab 0 0 —l 0 0 (77)

0 0 0 —1 0
0 0 0 0 —l

andthe reductionfollows from:

= eis~_u (78)

5.1.1. 1-Folds
Parametrizethe singularity by:

= ci(x
11), p = 0,...,3 (79)

and0 is

~o 1 0 0 0

0— & 0 1 0 0 (80)
— ci2 0 0 1 0

ci3 0 0 0 1
the characteristicequationthen is:

g’1”~11q5~_.m
2O (81)

which after reduction, namely setting x_
1 = const. in (79), now correctly

describesfree particleswith arbitrary masses.

5.1.2. 2-Folds

The singularity and0 are:

x_1 =ci_i(x1) (82)

x0 = cio(x1), i = 1,2,3 (83)

/ci—i,i cio,i 1 0 0\
0 = ci—1,2 ciO,2 0 1 0 (84)

\ci—1,3 ciO,3 0 0 1)
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andthe characteristicequationis:

+ ~ (m2(~o,~2— (ci_l,i)2) — m2 = 0 (85)

5.1.3. 3-Folds
The singularity is parametrizedby

x.
1 =ci_i(x1) (86)

x0 = cio(x,) (87)

x1 =cii(x,), i = 2,3, (88)

0 = (ci_l,2 ciO,2 cil,2 1 0’\ (89)
\.ci—l,3 ciO,3 cil,3 0 1)

The characteristicequationis:

(ci-l,2cio,3 — ciO,2ci-l,3)
2 + (ci-l,2cil,

3 — cil,2ci-l,3)
2

2i~ .1. .~ ..i. \2 ~2 i~i~ ~2
— m ~JP0,2Yl,3 — Yl,2Y0,3) + ~Y—1,3) + kY—1,2)

+ m2 ((cil,3)2 + (cu,
2)

2— (cio,3)2 — (cio,2)2 + 1) = 0. (90)

5.1.4. 4-Folds
In this casewe parametrizethe singularity with t:

X_
1 = ci_1(t) (91)

= ci,(t), i = 1,2,3 (92)

0 = (ci—1,o 1 cii,o ci2,O ci3,0) (93)

andthe characteristicequationis:

= m2 (1 _~(ci1o)2)~ (94)

which after reductiongives the squareof the usuallagrangianm
We now list the parametrizationof the singularitiesandthe corresponding

characteristicequationsfor k-folds in the Schrödingercase.

5.2. ExtendedSchrodingercase

The extendedSchrödingerequationis:

gabj~~~= 0, a,b = —1,0,1,2,3 (95)

with
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—V —1/2 0 0 0
—1/2 0 0 0 0

1gab11 = 0 0 —1/2m 0 0 (96)

0 0 0 —1/2m 0
0 0 0 0 —l/2m

The expressionfor i~ is

ü(x) = e1~~~/hu(x11). (97)

5.2.1. 1-Folds

x_~= ci(x11) (98)

+ cio - V = 0 (99)

Reducing~ one finds that this canbe interpreted in four dimensions as the

Hamilton—Jacobiequation.

5.2.2. 2-Folds

x1 = ci_i(x1) (100)

x0 = cio(x~), i = 1,2,3 (101)

(~)
2ciIkcii,Ici0,k2 - ~ ci-i

1cio~t

+ V~~(cio,1)2_~= 0 (102)

5.2.3. 3-Folds

x1 = ci_u(x2,x3) (103)

x0 = cio(x2,x3) (104)

x1 = cii (x2,x3) (105)

- (~)3 (ci1,2cio,3 - ciO,2ci-i,3)

+ (~)((cio,2cii,3 - cii,2cio,3) (ci-1,2cii,3 - cil,2ci~l,3)

+ci_i,3ci0,3+ ci— 1,2ci0,2)

-V (~)((cio,2cii,3 - cil,2ci0,3) + (cio,3)
2 + (cio2)2)
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-~ ((c1,3)2 + (cil,2)2 + 1) = 0 (106)

5.2.4. 4-Folds

x..
1 =ql_1(t) (107)

x = ci1(t), i = 1 ...3 (108)

~m (~(ci~0)2) - ci-i,o + V = 0 (109)

After reductionthis equationgives the lagrangianof a particle in the poten-
tial V.

6. Complementary equations for 1-folds

In this last section we discussthe complementaryequationswhich, as we
said, arenecessaryfor acompletedescriptionof the singularities.

The procedurefor finding the complementaryequationsfor 1-folds in the
caseof 1-singularityequationsfor a scalarsecondorder differential equation
is as follows. Let usconsidera singularity describedby the equation

x~—ci(x~) = 0, i = l,...,n— 1, (110)

a basis of vector fields tangentto the projectionof the fold on the baseis

X,=0,+qllafl (111)

We alsohavethe initial data

u—h=0 (112)

un—g=0 (113)

Initial dataon asingularityaresubjectto constraints,whichcan bedescribedin
termsof a setof equations,which turn out to bethe complementaryequations.
To find them let usproceedas follows.

Actingwith the vector fields X, on the initial data,after somemanipulations
and including the differential equationsF = 0, we obtain a system in the
unknownsu’1V:

ujn + dUnn = gj

U] — ci,cl~u~~= h,1 — ci,3g — (çb~g~+ d~g~)

F(x11,u,u11,u~~)=0 (114)

Thereare n—i + ~n(n —1) + 1 = ~n(n + 1) equationsin the samenumber
of unknowns.
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Using the 1-characteristic equation (i.e. along the singularity) the system
becomesdegenerate,that is, the determinantof the matrix of the coefficients
of the u11~’svanishesidentically when the characteristicequationis substituted
into it. Writing the systemin matricial form we can expressit as

MU = C (115)

where U is the vector of the unknowns,M is the matrix of the coefficients,
and C is the vector of the known factors of the system (114). If we indicate
by }‘~ a basis of vectors of the left kernel of M,

ytMQ, (116)

the complementary equations are

Y1tC = 0 (117)

Obviouslyif we changethe choiceof the coordinatexn in (110), Eqs. (111)—

(114) will change accordingly.

6.1. Examples

6.1.1. Klein—Gordoncase

The singularitiesare describedby the equation

t—ql(x1) = 0, i = l,...,3 , (118)

and the initial data are:

u—h=0 (119)

uo—g=0 (120)

The system (114) becomes:

UiO + u~3oçb1= g,

u~1— ciiciiuoo = h11 — ci~~g— (ci~g~+ gj&)

u00—~u~~= —m
2h (121)

The characteristicequationis

= 1 . (122)

The complementaryequationis

V2h + m2h— g — (V2~)g— 2Vci . Vg = 0 (123)
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6.1.2. Schradingercase

With the sameparametrizationof the singularity, the system(114)becomes:
u,0 + uooci, = gj

— 1u00 = h11 — ciG~ — (dig~ + g.ici1)

3

= —Vu + ihg (124)

The characteristicequationis

(125)

whosesolution is

d~=0. (126)

The complementaryequationis:

/12
———V

2h+ Vu — ihg = 0 (127)
2m

6.1.3. Extended Klein—Gordon

Parametrizingthe singularity as follows:

x..
1—ci(x11)=0, p=O,...,3, (128)

the complementary equation is:

LJh — — = 0 (129)

The reducedequationis obtainedusingfor h and~ the ansatzin Eq. (78):

h(x)=e’~’h(x’1) (130)

~(x) = 0_ih(x) = ieix1h(x’1). (131)

The result is

Eh — ~Jçbh— 2i011q10’1h = 0. (132)

6.1.4. Extended Schrodinger
Using the sameparametrizationof the previousexample,the complementary

equationis:

~(V2h - (V
2d)~-2Vd.V~)—~ = 0. (133)

Accordingto Eq. (97), we set
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h(x) =e1~thh(x11) (134)

~(x) = Oih(x) = ~e1~h/hh(x11), (135)

so that the reducedequationis

~1(V2h — ~.~(V2ci)h— ~2Vci Vh) — ~h0 = 0 (136)

6.1.5. Maxwell case
Now we deducethe complementaryequationsfor Maxwell equations.This

time the systemof differential equationsis degenerateof the first order, and
the fields arevectors,thereforethe fields u~’will havean extra(upper) index;
to avoid confusion,we will usefor it the first lettersof the greekalphabet.The
differential equationsare representedon J1 by Fa (x11, ut’, u~) = 0.

The characteristic equations can be obtained by equating to 0 highest order
minorsof the characteristicmatrix: (0Fa/0U~)f11where the f11 (x) = 0 is the
equationfor the singularity.

In the Maxwell case the fields are 6, we identify u’ = E’, u’~
3= Th, i =

1, 2, 3; the 8 Maxwell equations are:

u~= 0

u~3= 0
~ijkui =

.riJkuJ+3 = �pu~ (137)

Thecharacteristicmatrix is rectangular6 x 8, andits minorsof order6 have
determinantsof the form

= 0. (138)

So the only solutionis, as expected,the eikonalequation.
We now look for the complementaryequations.To this purposelet us

considera singularitydescribedby the equations

t—ql(x’) = 0, (139)

with tangentfields spannedby

x
1=a1+~a0. (140)

This time the initial datawill be of the kind:

(141)
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Proceedingin analogywith the scalarcasewe obtain:

u7+ql~u~=h~’ (142)

which togetherwith (137) form a systemon J
1.

To find the complementaryequationswe canproceedas before,evenif the
systemis overdetermined.In thiscasethe matrix of the coefficientsis 26 x 24
and, usingthe eikonal, the left kernel hasdimensionfour. The equationsone
obtainscanbe written as:

f/2VhE+Vf~(VAhB)0 (143)

rpV AhE + Vf(V .hB) — Vf A (VAhB) = 0 (144)

where

hE= (h1,h2,h3), hB = (h4,h5,h6)

6.1.6. Dirac equation
Herewe find four complementaryequations:

fPYVP~(iY~fluJ~— u”) = 0 (145)

where j = 1,...,3, ci,fl,p,v = l,...,4, and f = 0 is the equationof the
singularity.

7. Conclusions

From the mathematicalpoint of view the theory of singularities of the
generalizedsolutionsof PDE’s is a generalizationof the standardsingularity
(or ‘catastrophe’) theory. In fact the latter can be viewed as the part of the
former dealing with the solution of zero-orderdifferential equations.Many
interestingaspectsappearin this generalization,and we discussedbut a few
of them in this paper.Thereforethereis no doubt that this generalizedtheory
of singularitiesis worth to be developedas anewbranchof puremathematics
to amuch largerextent.For the stateof the art seerefs. [3—6,111.A possible
importantrole of this theory is discussedin refs. [6,12]

The ‘phenomenology’presentedin this article indicatesa numberof more
concreteproblemsof interest.Among themthereis the systematicdevelopment
of the theory of bicharacteristicsof k-characteristicequations.Somesort of
duality betweenk-characteristicand (n — k ) -characteristicequationsemerges
from this paper;this led to the hypothesisof an analogof the Legendretrans-
form, and a natural extensionof the classical Lagrangianformalism. Apart
from theseargumentswe canexpecta generalizationof the standardHamilto-
nian formalism which, with respectto I-characteristicequations,would play
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the samerole the standardone plays with the usualcharacteristics.It is very
likely that sucha generalizationis in the spirit of refs. [13,14].

A problemthat remainsopenis thatof a systematicalphysicalinterpretation
of the new equationspresentedhere, as well as the search of alternative
singularity types.In particular the extendedequationspresentedin Section5,
which at this moment can seema meretrick, have to be understoodmore
conceptually.Another open questionof possiblephysical relevanceis that of
putting the old problemof the field sources[15,16] in the framework of the
theorypresentedhere.
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